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ABSTRACT Automatic grasping is playing an important role in robotics, and traditional grasping approaches
cannot deal with both occlusions and texture-less objects well. To improve the stability and accuracy of
grasping in a novel and occlusion environment, a grasping approach based on instance segmentation and
self-supervised learning pose estimation network is proposed to grasp objects with the manipulator in this
paper. The approach can be divided into three phases: instance segmentation, pose estimation, and pose
transformation. Instance segmentation predicts classification masks for each pixel. Masks which stand
for the contour of objects provide a heuristic knowledge for the self-supervised learning pose estimation
network. Pose estimation network has two fully connected layers and regards estimation as a self-supervised
classification problem. Then, the pose can be transformed from value in pixel coordinates to actual value
relative to the base coordinate of the manipulator. As a result, the manipulator can be operated to grasp by
the given actual value of pose. With the help of the approach proposed in this paper, we improve the grasping
accuracy by 35%, compared to the former grasping approach based on the pose estimation network on the
grasping dataset of CMU. Besides, grasping with this approach on hardware also shows a high success rate.

Therefore, the proposed approach is a more robust and more accurate way of grasping.

INDEX TERMS Grasping, neural networks, robot vision systems, supervised learning.

I. INTRODUCTION

Grasping operation with manipulator is a hot research direc-
tion in recent days. The industrial manipulator grasping is
based on manual teaching. A manipulator can grasp the
object by fixed position after being taught to do so. It is
applied in robot industry that guide robot to do some repet-
itive works. It is obviously that the traditional grasping
scheme is hard to deal with grasping novel objects. Therefore,
new grasping pose needs to be taught to make it operate
normally. With the development of computer vision and
Amazon Picking Challenge [1], a lot of grasping methods
based on learning and template matching are becoming
more and more popular. For learning-based approaches,
CNNs [2], [3], and autoencoders [4] are used to predict grasp-
ing locations on the RGB image. Rodney [5], Shimoga [6],
Lozano-Perez et al. [7], and Van-Duc [8] show the way CNN’s
work to predict grasping attitude with 3D depth sensor. Since
the grasping system considering both location and attitude
based on learning, Du et al. [9] proposed an approach based

on deep learning which spends more than 10 seconds on esti-
mation of grasping pose due to the large number of weights
of fully-connect layers with the GPU of GTX980. However,
learning-based approaches rely on texture of objects and
have some disadvantages when inferring texture-less objects.
There are also lots of ways based on template matching
proposed. Zeng et al. [10] applied the network of 3D segmen-
tation and calculates the grasping pose with template match-
ing of 3D point cloud, which received ideal results. Some
methods optimizing the mechanism of template matching
such as SegICP [11] are proposed recently to improve match-
ing accuracy. Both self-occlusion and mutual-occlusion lead
to fragmentary of object information, which is harmful to
template matching. Therefore, these approaches based on
template matching cannot perfectly deal with self-occlusion
and mutual-occlusion between objects, which are common
because of the inappropriate pose of camera.

In a word, texture-less and occlusions are still big chal-
lenges for grasping pose estimation. Moreover, small objects
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introduce many issues in analysis and grasping due to its low
definition in vision.

Therefore, an intelligent grasping approach based on
instance segmentation and self-supervision learning pose
estimation, which shows robustness to multi-scale and
texture-less objects and improves the grasping accuracy,
is proposed in this paper. The main contribution of this paper
is that the approach sends the output masks of instance seg-
mentation to a pose estimation network which is trained by
robot-labeled dataset. Feature pyramid network is set as a part
of network to improve the performance of multi-scale objects.
Unlike template-matching based approaches, our approach
overcomes the difficulties of occlusions and can grasp objects
which are not appeared in template library. Since it is trained
by robot-labeled datasets, it performs well on texture-less
objects in grasping, which is a great challenge for other
learning-based approaches.

Il. RELATED WORKS

Our approach builds on the substantial literature devoted to
instance segmentation and grasping pose estimation based on
networks. The whole robot system should identify the object
in the task environment and have a probable location of it
firstly. Then, the relative pose of the object under manipu-
lator is needed to be estimated for manipulator operations.
Therefore, literatures about instance segmentation and pose
estimation are discussed here to explain how they develop in
recent years.

A. INSTANCE SEGMENTATION

Compared to semantic segmentation, instance segmentation
distinguishes object instances. In another word, it includes
both classification and segmentation of objects. The classi-
fication task is based on region-based methods and the seg-
mentation task is based on segment proposal methods. So, lots
of approaches which process these two sub-tasks separately
such as SDS [12], Hyper-column [13], CFM [14], MNC [15],
Multi-PathNet [16]. To propose an end-to-end instance-aware
semantic segmentation solution, Li ef al. [17] interact the
segment proposal method in [18] and object detection method
in [19] to an instance segmentation system, which is called
“fully convolutional instance segmentation”. He et al. [20]
propose the Mask R-CNN, which is regarded as a small
FCN mask branch added to Faster R-CNN to predict a multi-
channels output.

Approaches process tasks separately have some drawbacks
such as losing spatial details because of the ROI pooling,
which harms segmentation results a lot. FCIS predicts classes,
boxes and masks simultaneously and it is fully convolution-
ally. As it is an end-to-end network, the whole inference
procedure is faster than former works. Whereas it is still
hard for FCIS to deal with edges of overlapping instances
and the proposal of Mask R-CNN eliminates spurious edges
caused by errors on overlapping instances in FCIS. We design
a segmentation network for grasping, which is similar with
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Mask R-CNN. Occlusion is common in grasping and our
network deals well on it.

B. POSE ESTIMATION

With the help of object detection and sematic seg-
mentation, pose estimations refines object’s location
and calculates the most likely grasping pose. It distin-
guishes a lot for RGB images and RGB-D images. For
RGB-D images, LINEMOD [21] uses gradient and normal
features to estimate the pose. Besides, a more widely used
approach is iterative closet point registration [22] which
match the class of point cloud to the template. As for
RGB images, there lots of local features such as SIFT [23],
ORB [23] to get the pose of highly-textured objects in tradi-
tional way. To improve the robustness of estimation, several
datasets and models built on deep learning are proposed such
as [25] and [26].

For RGB-D images, the method based on building
3D models is an extremely huge problem by itself, which
costs more calculation time. And the cost of RGB-D camera is
high. As for RGB-images, the feature designed by deep learn-
ing shows better performances on estimation than traditional
features, whereas these methods have disadvantages of losing
stereoscopic information. We design a self-supervised pose
estimation network for RGB images. As it is self-supervised,
the stereoscopic information and distribution of mass are
considered during the estimation.

In summary, our approach combines the instance seg-
mentation network and the pose estimation network. This
approach appears to be one of the first to take the output of
segmentation as the input of following pose estimation net-
work, which receives great performance in grasping accuracy.

Ill. SELF-SUPERVISED MANIPULATOR GRASPING
APPROACH

In our approach, instance segmentation, pose estimation and
pose transformation are mainly involved in. Procedures can
be seen in FIGURE 1. Instance segmentation consists of
object detection and semantic segmentation. Object detection
detects categories and the bounding box of objects in the RGB
image obtained with depth camera. Semantic segmentation
gets the more accurate contour information of objects and
is a classifier for every pixel. The second part is the pose
estimation, which is designed to calculate the best pose of
the object for manipulator to grasp. It relies on the result of
object segmentation and size of gripper fingertips. Finally,
it is needed to transform the pose in the image to the pose
under manipulator. The above three main aspects provide
information for manipulator operations so that the manipu-
lator can grasp and place objects automatically.

A. INSTANCE SEGMENTATION NETWORK FOR GRASPING

Depth camera can extract both color frames and depth frames.
In our approach, we use a network which is based on Faster
R-CNN [27] to analysis the classification, bounding box
and contour of objects in the color frame as the instance

VOLUME 6, 2018



X. Shu et al.: Self-Supervised Learning Manipulator Grasping Approach

IEEE Access

Classification/
bounding box/
color frame Instance segmentation

—_—
Segmentation

depth frame

Pose
Estimation
Network

two-dimensional coordinate
+
one-dimensional attitude

three-dimensional
coordinate

Depth photograph

FIGURE 1. Block diagram of our grasping approach.

segmentation method. Convolutional layers are designed to
extract feature map and then Faster R-CNN includes two
main parts of network. The first one is called Region Pro-
posal Network, which is designed to propose candidate object
bounding boxes. And the second part uses a ROIPool layer
to extract feature of proposal boxes from feature map and
regress the classification and bounding box. We add a branch
for predicting an object mask which can stands for the contour
of object, in parallel with the existing branch for bound-
ing box recognition on the framework of Faster R-CNN.
ResNet-101 is set as the backbone of network which appears
better than ResNet-50 and other kinds of art-of-state back-
bones. A Feature Pyramid Network [28] is added as the head
of framework and uses a top-down architecture with lateral
connections to build an in-network feature pyramid from a
single-scale input, which improves multi-scale detection of
objects. ROIAlign Layer is designed to replace the former
ROIPool Layer because of its decrease in misalignments
between the ROI and the extracted feature. The ROl is divided
into a fixed number of bins. It removes the quantization
of the ROI boundaries and bins while bilinear interpolation
is applied to compute the values of input features at four
regular sampled location in ROI bin. Thus, there is no more
quantization to be considered.

A multi-task loss function is proposed to combine the clas-
sification loss, the bounding box loss and the mask loss while
training. The classification loss and the bounding box loss are
proposed in Fast R-CNN [29] and they are same with these
defined in it. The mask loss has the output of KM? dimension
which represents K classes binary masks for M+ M resolution
and it is an average binary cross-entropy loss with pixel level
sigmoid, which shows large gains over softmax. And it is only
applied when the ROI is positive. A ratio of 1:3 of positive
to negatives of sampled ROIs are sent to the GPU while
training. Besides, RPN and other convolution layers share
their features because they use the same backbone. When it
comes to inference, 1000 ROIs are proposed per image and
k™ mask is outputted, where k is the predicted class of the
detection branch.

The instance segmentation information is sent to the fol-
lowing pose estimation network. On the one hand, it can help
us to grasp the exact object which we want. On the other
hand, bounding box and contour of the object provided by
it can improve the inference accuracy of the pose estimation
network with the same quantity of sampled patches.
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B. SELF-SUPERVISED LEARNING POSE ESTIMATION
NETWORK

A self-supervised learning network is applied to estimate
the pose of grasping. Black lines mean the sampled patch
and grasping configuration lies in three parameters, grasp-
ing position A (X, y) and grasping attitude 6. As shown
in FIGURE 2, grasping position is the center of grasping
patch and grasping patch is set to a fixed size which is larger
than the projection of gripper fingertips on the image to
include context. Grasping attitude ranges from 0° to 180°,
whose period is 180°. Red lines are the corresponding gripper
location.

Five convolutional layers taken from AlexNet CNN model
and two fully connected layers with 4096 and 1024 neurons
are designed as the framework of network. When given an
image, we randomly sample grasping positions and extract
patches which are fed into the network to predict the grasping
attitude. The grasping position is calculated as the center
of sampled patch. As for attitude estimation, classification
shows higher grasping rate than regression in pose estimation,
which can be referred in the related works [26]. We assume
that the step of grasping attitude is 6 and 180 should
be divided by 6. For every given patch, we estimate an
(180/6)-dimensional likelihood vector which represents the
likelihood of whether the center of the patch is graspable
at (180/0) different grasping attitudes. Thus, it is seen as an
(180/6)-way binary classification problem.
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FIGURE 3. Framework of the whole network.

Softmax is added to calculate the loss function when the
network is training. The dataset used in training is labeled
by grasping attempts with manipulator instead of human
labeling, which means it is self-supervised. Given a grasping
position and a grasping attitude, the manipulator can grasp
objects with the given grasping pose. After the gripper is
closed and the manipulator rises, if the pressure sensor on the
manipulator can feel the constant pressure during the grasp-
ing method, then the pose is labeled to positive. Otherwise,
the pose is labeled to negative. The whole labeling method
is based on self-supervised of manipulator. Self-supervised
reduce the work of human labeling. Besides, it considers mass
distribution of the object which is quite important to object
grasping. While it comes to inference, we select the grasping
position and grasping attitude with the highest output score
from all angles and all sampled patches.

The combination of instance segmentation and pose esti-
mation helps a lot on grasping. We sample patches inside of
contour of the object. As baseline discussed in [30], there is
a rule about grasp that manipulator should grasp about the
center of the patch. It is implicit in the combination because
the center of patch falls in the bounding box or the contour
of object. FIGURE 3 shows the overall framework of our
network.

C. POSE TRANSFORMATION

To make the manipulator operate normally, we need the
three-dimensional coordinate and the grasping attitude under
the manipulator. We can get the grasping attitude from the
pose estimation network, we still need to transform the
two-dimensional grasping location in the color frame to the
three-dimensional grasping location under the manipulator.
Theoretically, we can get depth information of the object
in color frame through the calibration of color frame and
depth frame to extract three-dimensional location coordinates
under camera space. We take the Kinect as our depth camera
and the camera space of the Kinect is shown in FIGURE 4.
We use a rectangle to calibrate the color frame and depth
frame. Firstly, we must let the side of rectangle parallel to
the bounding of frame. Then, we measure the correspond
length of a side in two frames for 10 times and calculate
the average transformation ratio /; and /, in two bounding
directions. We assume a point’s pixel coordinate in the color
frame is (x., y.) and this point’s pixel coordinate is (x4, y4)
in the depth frame. The relationship between them can be
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FIGURE 4. Camera space of Kinect.

described in the following equation.

Xq = Iy % xc + by
Ya = by ¥y + by (D

As the transformation ratio /. and I, is calculated, we
sample 10 corresponding pixels in color frame and depth
frame to calculate the transformation bias b, and b,. Sim-
ilarly, we also use the average of 10 calculated values. With
transformation ratio and bias, we can get the correspond pixel
in depth frame for every pixel in color frame. With the help
of depth information, we can calculate the three-dimensional
coordinates under the camera space by following equations.

X1 Xc
| =aM,"| ye )
21 1
ke 0 u
M;, = 0 ky Vo 3)
0 0 1

In the above equation, M;, is the internal matrix of camera
and z; is the depth distant obtained. So, the coordinates of
grasping position under the Kinect space (x1, y1, z1) can be
calculated with the above equation.

However, we want to get the coordinate under the manip-
ulator instead of space coordinate under the camera space to
simplify the operation of manipulator. We adjust the relative
position of Kinect and manipulator to make this question
easier. As shown in FIGURE 5, we coincide the Kinect’s
Z axis with the arm’s X axis. And we make the Kinect’s X axis
parallel to the arm’s Y axis. In this way, the Kinect’s Y axis
is parallel to the arm’s Z axis. We assume that coordinates of
grasping position under the Kinect space is (x1, y1, 21), then
coordinates of the center of the object under the manipulator
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FIGURE 5. Space under Kinect and manipulator.

spaceis (x2, y2, z2). From the following equations, we can see
the relationship between them.
xp = z_{dist} + z1
y2
22

xi
y1 — y_{dist} 4

In these equations, y_{dist} is the distance between two coor-
dinate origins in the Y axis of Kinect space and z_{dist} is
the distance between two coordinate origins in the Z axis
of Kinect space, which is shown in FIGURE 5. From these
equations, three-dimensional space coordinates under the
manipulator can be easily calculated.

Grasping operations with manipulator need three-
dimensional pose information, which means six inputs totally
whereas we only provide the three-dimensional position and
a single attitude. The relative location relationship between
the camera and the manipulator is shown in FIGURE 5.
Thus, we assume that the Z axis of gripper is always perpen-
dicular to the camera photography plane. In this condition,
the manipulator can be operated with a three-dimensional
position and a single attitude information. Therefore, we can
grasp objects with the pose calculated in this condition. The
whole operation procedure is as follows:

1) Initialize the pose of the manipulator.

2) Control the last three joints to make the Z axis perpendic-
ular to the camera photography plane and adjust the grasping
attitude.

3) Control the front three joints to reach the target position
from the initialization and keep the attitude in 2).

4) Close the gripper and apply pressure to grasp the target
object.

5) Control the front four joints to move the object to a fixed
location and place it.

6) Turn back the manipulator to the initialization pose.
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TABLE 1. Detection results on COCO.

METHOD DATA AP, 10U: AP, AREA:
050951 05 ]075] s [ M | L
SSD513__ | VAL 2017 | 332 | 533 | 352 | 13.0 | 354 | 51.1
YOLOV3 | VAL 2017 | 33.0 | 579 | 344 | 183 | 354 | 41.9
(F:‘;ISI\TIER RovaL 2017 | 362 | 59.1 | 390 | 182 | 39.0 | 482
OURS VAL 2017 | 409 | 61.9 | 44.8 | 23.5 | 44.2 | 53.9

(2) (b)

FIGURE 6. (a) shows the input image where objects are overlapped and
(b) is the segmentation result.

IV. EVALUATIONS

In experiments, we use Kinect as the depth camera, which
can get the 1920 x 1280 color frame and 512 x 424 depth
frame. And we train the segmentation network with the
coco_train_2017 dataset. The coco dataset includes large
numbers of classes which can be grasped, such as bot-
tle, banana, umbrella and teddy bear. Besides, the grasping
dataset of self-supervised is used to train the pose estimation
network and the dataset of Cornell University is used to
validate the accuracy of pose estimation to ensure the novel
of inference objects. Finally, the manipulator is used to grasp
and place objects with the manipulator of Schunk.

A. RESULTS OF INSTANCE SEGMENTATION

The training of segmentation network has 180000 iterations
and there are a lot of hyperparameters to tune during the
training. The base learning rate is set to 0.02, which is rela-
tively large and it decays with steps. Gamma of learning rate
is 0.1 and decays at the 120000 and the 160000 iterations.
Besides, weight decay is set to 0.0001.

We evaluate the instance segmentation network with the
coco_val_2017 dataset, 5000 images included totally. By the
reason that bounding boxes of detection and masks of
segmentations are both used in the following experiment,
we evaluate them separately. Our work is based on Faster
R-CNN and we use the ResNet-101, a deeper network, with
the feature pyramid network to predict the result, which
seems a more accuracy result. We compare it with Faster
R-CNN [27], YOLO v3 [35] and SSD513 [36]. The detection
results are shown in Table 1, there is no doubt that our network
is a good solution for detection because it improves more
than 4.7% on mean average precision compared with the
second-highest Faster R-CNN method. It shows that feature
pyramid network helps an improvement to detect multi-scale
objects.
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FIGURE 7. Patches and results in different sampling method. (a) shows the sampling range and patches of the method (1), (b) shows the sampling
range and patches of the method (2), and (c) shows the sampling range and patches of the method (3). (d) shows the estimation result of
method (1), (e) shows the result of method (2), and (f) shows the result of method (3).

TABLE 2. Segmentation results on COCO.

veon | Data AP, 10U AP, AREA:
05095] 05 J075] S | M | L
MNC | VAL 2017 | 246 | 443 | - | 47 | 259 | 436
FCIS VAL 2017 | 288 | 487 | - | 68 | 30.8 | 495
FCISt | G 2017 | 202 495 | - | 71 | 313 | 500
OHEM — : : : : :
OURS | VAL 2017 | 364 | 585 | 38.7 | 166 | 392 | 54.0

Besides, segmentation has also been evaluated on the same
dataset, as shown in Table 2. MNC [15] (Multi-task Network
Cascades) and FCIS [18] (Fully Convolutional Instance-
Aware Semantic Segmentation) are art-of-state methods in
instance segmentation which detects and segments separately
and they can be optimized with OHEM [37] (Online Hard
Example Mining). From this table, we know that our seg-
mentation network also answers well on segmentation with
an improvement about 7.2% on mean average precision com-
pared with the optimized FCIS thanks to the independence of
masks between different classes.

Compared to former instance segmentation approach, our
network shows great results on occlusion, which is common
in object grasping environment. From FIGURE 6, it can be
concluded that no more competition among classes is existed
and spurious edges are disappeared. It costs 1.21 seconds for
1920 * 1080 input image, which is the size of Kinect color
frame. But if we resize the image into 640 x 480, its inference
time decreases to 0.12 seconds. Most of inference time are
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cost on up-sampling and the whole inference speed can fit in
the requirement of real-time detection.

B. RESULTS OF POSE ESTIMATION

In these experiments, we set the step of grasping attitude 6
to 10° as a tradeoff. If the step is too large, accuracy is not high
whereas inference will cost too much time if the step is too
small. We use the bounding box and the mask from instance
segmentation as the heuristic input of the pose estimation
network.

There are three different kinds of sampling methods men-
tioned as follows: (1) we sample patches from the whole
image as inferred in [26], which means the center of patches
should lie in the range of the whole image (2) we sam-
ple patches from the bounding box of the detected object,
(3) we sample patches inside of contour of the object.
(1) is the traditional way of sampling of the network and has
the biggest sampling range. Method (2) and method (3) have
much smaller sampling range and are easier to approach the
accurate grasping position. We compare these three methods
for the object be segmented in the former network. We sample
the fixed quantity of sampled patches and compare the pose
estimation accuracy.

In FIGURE 7, we show the patches and results in three
methods to predict on a shaver. Sampled patches are set
to 50 and it costs 0.15 seconds on the TITAN XP to predict the
pose estimation for each image. In FIGURE 7, (a) to (c) show
the corresponding fifty patches in method of (1) to (3) and
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TABLE 3. Pose errors between different methods.

.. Position error . Attitude error
- () _ o _ o
Approaches | Position-success (%) ave.+ std(mm) Attitude-success (%) ave.+ std(deg) Pose-Success (%)
Method (1) 42.36 12.77£6.36 50.06 21.97£7.25 23.22
Method (2) 88.30 11.18+6.12 59.57 19.15+6.49 51.06
Method (3) 97.37 9.37£5.27 59.77 20.01£6.61 58.27
TABLE 4. Tradeoff between pose errors and inference time.

Sampled Patches 50 100 200 300 500 1000

Position error 10.07£5.25 | 9.834522 | 937+527 | 9.51+5.07 | 9.53+527 | 9.51+4.99

avg.+ std(mm)

Attitude error 20.14+6.92 | 20.61+6.85 | 20.016.61 | 20.05:6.69 | 19.98+6.52 | 19.82:6.68

avg.+ std(deg)

Inference time(s) 0.15 0.26 0.75 1.01 1.44 2.83

the red lines are the range of sampling positions. The method
(3)’s sampling range is smallest and closest. It can be inferred
that (2) and (3) is higher ranked than (1) in sampled patches.
(2) and (3) are more likely to sample at the suitable position
for grasping, which can be shown in (d) to (f). Figure (d) to (f)
separately correspond to method (1) to (3). The red lines show
the location of gripper. The gripper still has a distance when it
is closed. As for shaver, its handle is too thin for manipulator
to grasp. Network without self-supervised cannot deal with
this problem. And (3) shows a higher success rate in grasping
than (2) which is common when the object is thin, long and
the object is placed with an orientation bias. In this situation,
bounding box’s area (area in red lines in (b)) is much bigger
than the real area of the object (area in red lines in (c)).
It shows a bigger difference in performance in Table 3 when
encountering large validation dataset.

We validate our approaches using the grasping dataset
of Cornell University. There are 833 images in total and it
includes over 100 kinds of novel objects which have not dis-
appeared in the training dataset. We set the sampling quantity
to 200 for example and select the one with highest network
output score as the predicting result. The difference between
the predicting result and the ground truth is calculated as the
pose error. We categorize the pose failure as exceeding errors
of more than 30mms in position or 20 degrees in attitude
compared with the ground truth.

In Table 3, the method (2) and method (3) we proposed
show an obvious improvement on position success. Thanks to
instance segmentation, the method (3) based on it increases
the position success to 97.37% and decreases the average
position error to 9.37mm, which means it almost does not
make mistakes when calculating the grasping position. As for
attitude, the method (2) and (3) shows just a little better than
the method (1) because they remove some incorrect attitude
estimations of incorrect position calculations. The attitude
success rate is still limited by the estimation network output
size, so it cannot be as high as position success rate. There-
fore, the instance segmentation has an indirect influence
on attitude estimation. In general, the method (3) is 7.22%
higher than the method (2) in the overall pose estimation
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FIGURE 8. Distribution of the pose transformation value.

success rate and it is 35.05% higher than the method (1).
In a word, the heuristic knowledge based on instance seg-
mentation inputted to estimation network helps a lot, which
shows better performances than the original network and the
network only based on detection. Therefore, we select the
network with method (3) as the pose estimation part of our
gasping approach.
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(2)

(©

(b)

(d

FIGURE 9. (a) is the color frame of Kinect after resizing and (b) is the corresponding depth frame. (c) shows that the manipulator has arrived the
grasp pose and prepare to grasp. (d) shows the state that the object can be easily grasped.

Pose error includes position error and attitude error. Larger
of sampled quantity leads to a lower pose error and a
longer inference time. So, we want to select a best sampled
patches quantity as the tradeoff between pose estimation
error and inference time. We set the sampling quantity to
50, 100, 200, 300, 500 and 1000 separately and use the
method (3) as the inference framework on the 640 x 480
input image. Results are shown in Table 4. For 50 and
100 sampled patches, errors are relatively large and they
can be decreased with the increasing of sampling quantity.
As for 300, 500 and 1000, the pose inference time is more
than 1 second, which seems to be unacceptable for real-time
calculation. Besides, they also do not show obvious decrease
in errors compared to the sampling quantity of 200. Thus, we
choose the sampling quantity of 200 to estimate the grasping
pose.

Besides, the whole segmentation and pose estimation pro-
cess can be finished in 0.9 seconds for a resized 640 % 480
input image and the sample quantity of 200 on TITAN XP,
which is much quicker than other approach based on deep
learning as 4 seconds in [25]. In another word, it can achieve
the target of real-time calculation.
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TABLE 5. Three-dimensional measurement and transformation value.

Measurement Transformation Value
Value(mm) Average(mm) standard
deviation(mm)
X axis 43.8 45.23 0.08
Y axis 64.9 66.36 0.12
Z axis (depth) 809.0 812.8 1.48

C. RESULTS OF POSE TRANSFORMATION

We transform to three-dimensional coordinates 200 times
for a fixed pixel in the color frame and compare them
with the measurement value. Results are shown in Table 5
and FIGURE 8, and these axes are illustrated under depth
camera’s space.

In Table 5, we can get the conclusion that the depth error
is 3.8mm and errors in x and y axis is even smaller, which are
in the range of 2mm. These errors can be acceptable for grasp-
ing. FIGURE 8 shows the probability distribution of the pose
transformation value and we can see that they approximately
conform to the normal distribution in three axes. Because the
transformation value in X and Y axes is unchangeable when
the value in Z axis is fixed, the distribution in three axes
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presents a similar probability. Besides, transformation value
in Z axis is not continuous with the step of Imm.

D. RESULTS OF GRASPING

With the three-dimensional coordinates, we can grasp objects
as we want. We take the transparent bottle as example
for grasping. Tradition approach based on manual teaching
cannot grasp an object in an arbitrary position and former
network does not perform well on texture-less object. The
manipulator’s grasping procedure are shown in FIGURE 9.
The upper figures in FIGURE 9 show the RGB frame and the
depth frame of the grasping object in the view of Kinect. The
RGB frame has a higher resolution than the depth frame and
instance segmentation and pose estimation are based on the
RGB frame. After the grasping pose is calculated, the three-
dimensional coordinates can be transformed with the help of
the depth frame. (c) in FIGURE 9 shows that the manipulator
arrives the transformed pose and prepares to grasp. At this
moment, the gripper of manipulator is at the maximum value
of its move range. As shown in (d), the gripper closes and the
manipulator rises after the pressure sensor on the gripper can
feel the constant pressure for a few seconds. Thus, our whole
approach also works well on real hardware grasping.

V. CONCLUSION

In this paper, we propose a new approach based on instance
segmentation and self-supervised learning pose estimation
network. These two networks are combined into a stable net-
work. The output of instance of segmentation especially the
contour of object can increase the pose estimation accuracy
about 35% in the following network. Pose are transformed
into three-dimensional coordinates under manipulator. Then
the approach can grasp objects with the help of Schunk
manipulator. During experiments of grasping evaluations on
dataset, we can get the conclusion that our approach is a
more accuracy approach for object grasping. And from exper-
iments of grasping texture-less objects like transparent bottle
on real hardware, we can find that our approach is a more
robust for all kinds of objects.
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